418 research outputs found

    Stress relaxation in asymmetric bistable composites: Experiments and simulations

    Get PDF
    In the last years, bistable composite structures are finding interest in several aeronautical applications such as power harvesting devices or morphing applications on very small aircraft/drones, not needing servo-activated control systems. Residual stresses, developed upon cooling after curing, leads to warped the composite laminates. Several batches of unsymmetrical and unbalanced [0/90] laminates were cured in an autoclave according to a standard temperature cycle, following the pre-preg supplier suggested curing cycle. In order to increase the thermal stresses (and hence the bistability phenomenon), these laminates were removed from the autoclave immediately after the curing reaction and rapidly cooled down at room temperature not applying the indicated cool rate between 2 and 5 °C min-1. During storage at room temperature, thermal stresses changed over time, indicating that asymptotic stress relaxation occurs. The first part of this work looks at residual stress characterization of bistable composite plates measuring the changes of shape observed during room temperature annealing. Rectangular plates were produced and the bistable geometric shapes were accurately assessed using a laser scanner system over several days, in order to monitor the curvature changes due to stress relaxation. Then phenomenological viscoelastic predicting models were proposed for a quick estimate for the strain/stress relaxation phenomenon. The loss of bistability was demonstrated with the help of numerical simulation and experimental testing. The final goal was to gain a better knowledge of the relation between processing and final shape of bistable laminates, in order to make them suitable for application on small air vehicles

    Two Dimensional Finite Difference Model with a Singularity Attenuation Factor for Structural Health Monitoring of Single Lap Joints

    Get PDF
    A Finite Difference algorithm that evaluates the health conditions of a bonded joint is presented and discussed. The mathematical formulation of the problem is developed paying particular attention to the singularity around the corners of the joint and implementing an original discretisation method of the partial differential equations governing the propagation of the elastic waves. The equations are solved under the only hypothesis of bidimensional field. The algorithm is sensible to defects into the bonded joint and can be used as an effective Structural Health Monitoring tool, as proven by the experiments that show close agreement with the numerical simulations

    A novel bistable energy harvesting concept

    Get PDF
    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a 'lever effect' aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures' constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments

    Non-linear methods based on ultrasonic waves to analyse disbonds in single lap joints

    Get PDF
    none4siAdhesive bonded lap joints are widely used in the aerospace field and non-destructive testing (NDT) techniques are critical in evaluating the quality of adhesion before and during use. Two types of bonded samples have been experimentally investigated in order to verify the reliability of non-linear elastic wave spectroscopy (NEWS) based on the use of ultrasound. Piezoelectric sensors have been attached to the samples and used as generators and receivers. Both the samples have shown non-linearities in their dynamic behaviour. Non-linear metrics have been applied to their structural responses over an assigned range of excitation frequencies based on higher order harmonic analysis in order to evaluate the degree of non-linearity of the samples. Possible interpretations of the experimental behaviour are provided in the paper based also on tomographic testing of the adhesive layer that showed the presence of microbubbles in the bond due to manufacturing process.restrictedScarselli, Gennaro; Ciampa, Francesco; Nicassio, Francesco; Meo, MicheleScarselli, Gennaro; Ciampa, Francesco; Nicassio, Francesco; Meo, Michel

    Non-linear Lamb Waves for Locating Defects in Single-Lap Joints

    Get PDF
    A novel method based on Non-linear Lamb waves behavior and Local Defect Resonance (LDR) is proposed for locating and evaluating disbonds in Single-Lap Joints (SLJ) typically used in aerospace industry. The presence of damages/defects such as disbonds leads to the presence of sub- and super-harmonics components in the frequency response. The maximum acoustic wave-damage interaction is reached by particular excitation frequencies that enhance the Non-linear response causing LDR. The LDR frequency is experimentally evaluated through the appearance of a single subharmonic component in the frequency spectrum of signals received by piezoelectric transducer (PZT) bonded on the structure. The Non-linear properties of Lamb waves are exploited to make defects generate subharmonic waves at LDR frequency. An algorithm is implemented for damage/defect localization that is accurately obtained by knowing PZTs positions, Time of Flight (ToF) and propagation properties of subharmonics packet. Several disbonds with different dimensions are artificially reproduced on an aluminum SLJ: experimental and FE results show good accordance both in usual (single damage) and critical (multi-damage) scenario. The paper proposes a baseline-free method for the disbonds detection, characterization and localization in SLJs that uses the PZT signals without affecting adhesive interface, thus allowing for an active health monitoring

    Carrera Unified Formulation (CUF) for the analysis of disbonds in Single Lap Joints (SLJ)

    Get PDF
    The aim of this work is the study of the adhesion integrity of metallic Single Lap Joints (SLJs) through the assessment of the MUL2 CODE, software developed by the MUL2 Research Group - Department of Mechanical and Aerospace Engineering of Politecnico di Torino. The MUL2 CODE is implemented through the Carrera Unified Formulation (CUF) for 2D structures based on Hierarchical Legendre Expansion (HLE) polynomials. An efficient method for the Structural Health Monitoring (SHM) of bonded joints is simulated and verified by CUF approach, in order to reduce the computational cost of analyses: by using transient excitations (toneburst signals), the structural health of damaged SLJ can be numerically evaluated. The interaction mechanism between the waves traveling through the investigated specimens is numerically modeled with a simple Finite Elements (FE) model and it is solved via MUL2 CODE and commercial software Ansys Workbench, respectively. Experimental campaigns data are compared with CUF and Ansys results demonstrating the consistence of the MUL2 formulation that is computationally simpler, but very efficient for the joint analysis. The presented and discussed CUF application is able to quantify with a high accuracy the debonding extension in the damaged SLJ, simply tuning the excitation frequency of the SHM technique

    The many faces of ubiquitinated histone H2A: insights from the DUBs

    Get PDF
    Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs

    delivery of biologically active mir 34a in normal and cancer mammary epithelial cells by synthetic nanoparticles

    Get PDF
    Abstract Functional RNAs, such as microRNAs, are emerging as innovative tools in the treatment of aggressive and incurable cancers. In this study, we explore the potential of silica dioxide nanoparticles (SiO2NPs) in the delivery of biologically active miRNAs. Focusing on the tumor-suppressor miR-34a, we evaluated miRNAs delivery by SiO2NPs into the mammary gland, using in vitro as well as in vivo model systems. We showed that silica nanoparticles can efficiently deliver miR-34a into normal and cancer epithelial cells grown in culture without major signs of toxicity. Delivered miRNA retained the ability to silence artificial as well endogenous targets and can reduce the growth of mammospheres in 3D culture. Finally, miR-34a delivery through intra-tumor administration of SiO2NPs leads to a reduced mammary tumor growth. In conclusion, our studies suggest that silica nanoparticles can mediate the delivery of miR-34a directly into mammary tumors while preserving its molecular and biological activity

    Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry

    Get PDF
    Terminal differentiation exerts a remarkably tight control on cell proliferation. However, the oncogenic products of DNA tumor viruses, such as adenovirus E1A, can force postmitotic cells to proliferate, thus representing a powerful tool to study progression into S phase. In this study, we identified the gene encoding Np95, a murine nuclear phosphoprotein, as an early target of E1A-induced transcriptional events. In terminally differentiated (TD) cells, the activation of Np95 was specifically induced by E1A, but not by overexpression of E2F-1 or of the cyclin E (cycE)–cyclin-dependent kinase 2 (cdk2) complex. In addition, the concomitant expression of Np95 and of cycE–cdk2 was alone sufficient to induce S phase in TD cells. In NIH-3T3 cells, the expression of Np95 was tightly regulated during the cell cycle, and its functional ablation resulted in abrogation of DNA synthesis. Thus, expression of Np95 is essential for S phase entry. Previous evidence suggested that E1A, in addition to its well characterized effects on the pRb/E2F-1 pathway, activates a parallel and complementary pathway that is also required for the reentry in S phase of TD cells (Tiainen, M., D. Spitkousky, P. Jansen-Dürr, A. Sacchi, and M. Crescenzi. 1996. Mol. Cell. Biol. 16:5302–5312). From our results, Np95 appears to possess all the characteristics to represent the first molecular determinant identified in this pathway
    • …
    corecore